
Исследователи из Пекинского университета совершили технологический прорыв, способный кардинально изменить мировую полупроводниковую промышленность. Разработанные ими 2D-транзисторы работают на 40% быстрее новейших чипов от таких гигантов, как Intel и TSMC, при этом потребляя на 10% меньше энергии. Это достижение описывается как "смена полосы движения" в отрасли, где Китай традиционно отставал от лидеров.
Профессор Пэн Хайлинь, возглавляющий исследовательскую группу, подчеркивает уникальность инновации: вместо кремния используется висмут в качестве основного материала, при этом производство возможно на существующем оборудовании.
"Если традиционные инновации в области чипов — это просто 'короткий путь', то мы 'меняем полосу движения'," — отметил Пэн.
Стратегический ответ на санкции
В условиях санкций, введенных США и ограничивающих производство кремниевых чипов последнего поколения в Китае, исследовательская команда переориентировалась на двумерные материалы атомной толщины, обеспечивающие более высокую скорость движения электронов.
Это открытие знаменует важный поворотный момент в полупроводниковой индустрии, десятилетиями полагавшейся на кремний. По мере миниатюризации чипов в соответствии с "законом Мура" до 3 нанометров, традиционные технологии начинают сталкиваться с фундаментальными ограничениями, включая повышенное энергопотребление.
Инновационная архитектура и материалы
Отличительной особенностью нового чипа является структура GAAFET (Gate-All-Around Field-Effect Transistor). Эта конструкция управляет потоком электричества в транзисторе, функционируя аналогично водяному клапану. Мостоподобная архитектура позволяет затвору окружать большее количество каналов тока, обеспечивая более точный контроль.
Исследователи разработали два специализированных материала: полупроводник Bi₂O₂Se и диэлектрик Bi₂SeO₅. Ключевое преимущество — практически бесшовное соединение между этими материалами с минимальным количеством дефектов, что исключает отражение электронов.
"Это подобно тому, как вода плавно течет по трубе — электроны движутся почти без потерь," — поясняет Пэн. Такая особенность обеспечивает более высокую скорость работы транзисторов при меньшем энергопотреблении.
Перспективы технологии
По оценкам исследовательской группы, при производстве с использованием современных технологий, их чипы будут работать примерно в 1,4 раза быстрее самых передовых кремниевых аналогов, потребляя лишь 90% от их энергии.
Кроме того, созданные на основе этой технологии логические схемы демонстрируют высокую производительность даже при очень низких напряжениях, что дополнительно снижает энергопотребление и повышает устойчивость к помехам.
Значение для мировой электроники
Данное открытие может стать катализатором нового витка развития полупроводниковой индустрии. Если технология докажет свою масштабируемость в промышленном производстве, это потенциально позволит Китаю преодолеть технологическую блокаду и занять лидирующие позиции в производстве передовых чипов.
Успех 2D-транзисторов также открывает путь к созданию более энергоэффективных и производительных устройств следующего поколения — от смартфонов и ноутбуков до центров обработки данных и суперкомпьютеров.